1,691 research outputs found

    Phased-array antenna phase control circuit using frequency multiplication

    Get PDF
    Circuit separates out, from multiplied signals, antenna element signals which have desirable phase angles and feeds them to appropriate antenna elements of phased array. System may be used in either transmitting or receiving mode

    Phase interpolation circuits using frequency multiplication for phased arrays

    Get PDF
    Antenna phasing circuit is described with the following advantages - 1/ increased number of phased elements, 2/ current repetition for each array element, 3/ circuit simplicity, and 4/ accurate phase interpolation. This circuit functions with Huggins Scan or with nearly any other phasing system

    Phase control circuits using frequency multiplications for phased array antennas

    Get PDF
    A phase control coupling circuit for use with a phased array antenna is described. The coupling circuit includes a combining circuit which is coupled to a transmission line, a frequency multiplier circuit which is coupled to the combining circuit, and a recombining circuit which is coupled between the frequency multiplier circuit and phased array antenna elements. In a doubler embodiment, the frequency multiplier circuit comprises frequency doublers and the combining and recombining circuits comprise four-port hybrid power dividers. In a generalized embodiment, the multiplier circuit comprises frequency multiplier elements which multiply to the Nth power, the combining circuit comprises four-part hybrid power dividers, and the recombinding circuit comprises summing circuits

    Improved circularly polarized antenna

    Get PDF
    Antenna includes two sets of linearly polarized elements. Each set contains slots in parallel array. Sets are mutually orthogonal and are driven in phase quadrature. By changing lengths of slots or their separations, antenna beamwidth can be changed over wide range. Similar results are achieved with dipole configuration

    Array phasing device Patent

    Get PDF
    Apparatus for generating microwave signals at progressively related phase angles for driving antenna arra

    Non-dispersive optics using storage of light

    Full text link
    We demonstrate the non-dispersive deflection of an optical beam in a Stern-Gerlach magnetic field. An optical pulse is initially stored as a spin-wave coherence in thermal rubidium vapour. An inhomogeneous magnetic field imprints a phase gradient onto the spin wave, which upon reacceleration of the optical pulse leads to an angular deflection of the retrieved beam. We show that the obtained beam deflection is non-dispersive, i.e. its magnitude is independent of the incident optical frequency. Compared to a Stern-Gerlach experiment carried out with propagating light under the conditions of electromagnetically induced transparency, the estimated suppression of the chromatic aberration reaches 10 orders of magnitude.Comment: 11 pages, 4 figures, accepted for publication in Physical Review

    In Memoriam: Louise M. Rosenblatt, 1904-2005

    Get PDF

    How to Be Persuasive in Literary Theory: The Case of Wolfgang Iser (Essay review of Iser\u27s The Act of Reading)

    Get PDF

    Truth or Consequences: On Being against Theory

    Get PDF

    Rhetorical Hermeneutics

    Get PDF
    corecore